On the local convexity of intersection bodies of revolution

نویسندگان

  • M. Angeles Alfonseca
  • Jaegil Kim
چکیده

One of the fundamental results regarding intersection bodies is Busemann’s theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is natural to ask how much of convexity is guaranteed under the intersection body operation. In this paper we provide several results about the (strict) improvement of convexity for intersection bodies of symmetric bodies of revolution. We show that the intersection body of a symmetric convex body of revolution always has a ‘very round’ boundary near the equator. Here, ‘very round’ can be expressed by the modulus of convexity around the equator. This result can be applied to get the statement that the double intersection body of a convex body of revolution is close, in the Banach-Mazur distance, to an ellipsoid in high dimension. We also prove results on the local convexity around the equator of the intersection body of a star body of revolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume difference inequalities for the projection and intersection bodies

In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.

متن کامل

COUNTEREXAMPLES TO CONVEXITY OF k-INTERSECTION BODIES

It is a well-known result due to Busemann that the intersection body of an origin-symmetric convex body is also convex. Koldobsky introduced the notion of k-intersection bodies. We show that the k-intersection body of an origin-symmetric convex body is not necessarily convex if k > 1.

متن کامل

Performance of SST k-ω Turbulence Model for Computation of Viscous Drag of Axisymmetric Underwater Bodies

This paper presents 2-D finite volume method for computation of viscous drag based on Reynolds-averaged Navier-Stokes (RANS) equations. Computations are performed on bare submarine hull DREA and six axisymmetric bodies of revolution with a number of length-diameter (L/D) ratios ranging from 4 to 10. Both structured and unstructured grids are used to discretize the domain around the bodies. Diff...

متن کامل

Local Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals

Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the  local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013